Unity-Shader(三)高光反射&Blinn-Phong光照模型

先看一下基本光照模型中的高光反射部分的计算公式:

逐顶点光照实现 高光反射

分析

在Properties语义块中声明了三个属性:

1
2
3
4
5
6
Properties
{
_Diffuse ("Diffuse" , Color) = (1,1,1,1)
_Specular ("Specular" , Color) = (1,1,1,1)
_Gloss ("Gloss" , Range(8.0,256)) = 20
}

_Specular用来控制材质的高光反射的颜色

_Gloss用于控制高光区域的大小

其他的代码基本和往常一样,不细说了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Tags { "LightMode" = "ForwardBase" }

CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "Lighting.cginc"

fixed4 _Diffuse;
fixed4 _Specular;
float _Gloss;

struct a2v{
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f{
float4 pos : SV_POSITION;
float3 color : COLOR;
};

在顶点着色器中计算了包含高光反射的光照模型

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
v2f vert(a2v v){
v2f o;
o.pos = UnityObjectToClipPos( v.vertex);
//得到环境光
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
//将法线从模型空间变换的世界空间
fixed3 worldNormal = normalize(mul(v.normal , (float3x3)unity_WorldToObject));
//在世界空间中光照方向
fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - mul(unity_ObjectToWorld , v.vertex).xyz);
fixed3 specular = _LightColor0.rgb * _Specular.rgb *pow(saturate(dot(reflectDir , viewDir)),_Gloss);
o.color = ambient + diffuse + specular;
return o;
}

首先计算了入射光线防线关于表面法线的反射方向reflectDir。犹豫Cg的reflect函数的入社方向要求是由光源指向交点处的,因此需要对worldLightDir取反再传给reflect函数。

然后通过——WorldSpaceCameraPos得到世界空间中的摄像机位置,再把顶点位置从模型空间变换得到世界空间下,再通过——WorldSpaceCameraPos相减即可得到世界空间下的视角方向。

最后

1
2
3
fixed4 frag(v2f i) : SV_Target{
return fixed4(i.color , 1.0);
}

效果

使用逐顶点着色器的方法得到的高光效果有比较大的问题,可以从效果图中看到有明显的不平滑,因为高光反射部分的计算是非线性的,而在顶点着色器中计算光照在进行插值的过程是线性的,破换了原计算的非线性关系。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
// Upgrade NOTE: replaced '_Object2World' with 'unity_ObjectToWorld'
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'

Shader "Unlit/Specular_1"
{
Properties
{
_Diffuse ("Diffuse" , Color) = (1,1,1,1)
_Specular ("Specular" , Color) = (1,1,1,1)
_Gloss ("Gloss" , Range(8.0,256)) = 20
}
SubShader
{
Pass{
Tags { "LightMode" = "ForwardBase" }

CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "Lighting.cginc"

fixed4 _Diffuse;
fixed4 _Specular;
float _Gloss;

struct a2v{
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f{
float4 pos : SV_POSITION;
float3 color : COLOR;
};

v2f vert(a2v v){
v2f o;
o.pos = UnityObjectToClipPos( v.vertex);
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
fixed3 worldNormal = normalize(mul(v.normal , (float3x3)unity_WorldToObject));
fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - mul(unity_ObjectToWorld , v.vertex).xyz);
fixed3 specular = _LightColor0.rgb * _Specular.rgb *pow(saturate(dot(reflectDir , viewDir)),_Gloss);
o.color = ambient + diffuse + specular;
return o;
}

fixed4 frag(v2f i) : SV_Target{
return fixed4(i.color , 1.0);
}


ENDCG
}

}
Fallback "Specular"
}

逐像素 实现高光反射模型

分析

在原来代码的基础上进行修改

修改顶点着色器的输出结构v2f

1
2
3
4
5
struct v2f{
float4 pos : SV_POSITION;
float3 worldNormal : TEXCOORD0;
float3 worldPos : TEXCOORD1;
};

修改顶点着色器

1
2
3
4
5
6
7
v2f vert(a2v v){
v2f o;
o.pos = UnityObjectToClipPos( v.vertex);
o.worldNormal = mul(v.normal , (float3x3)unity_WorldToObject);
o.worldPos = mul(unity_ObjectToWorld , v.vertex).xyz;
return o;
}

修改片元着色器:

1
2
3
4
5
6
7
8
9
10
fixed4 frag(v2f i) : SV_Target{
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
fixed3 worldNormal = normalize(i.worldNormal);
fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir , viewDir)) , _Gloss);
return fixed4(ambient + diffuse + specular , 1.0);
}

效果:

可以看出,使用逐像素实现高光反射,使得高光效果更加平滑

全部代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// Upgrade NOTE: replaced '_Object2World' with 'unity_ObjectToWorld'
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'

Shader "Unlit/Specular_2"
{
Properties
{
_Diffuse ("Diffuse" , Color) = (1,1,1,1)
_Specular ("Specular" , Color) = (1,1,1,1)
_Gloss ("Gloss" , Range(8.0,256)) = 20
}
SubShader
{
Pass{
Tags { "LightMode" = "ForwardBase" }

CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "Lighting.cginc"

fixed4 _Diffuse;
fixed4 _Specular;
float _Gloss;

struct a2v{
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f{
float4 pos : SV_POSITION;
float3 worldNormal : TEXCOORD0;
float3 worldPos : TEXCOORD1;
};

v2f vert(a2v v){
v2f o;
o.pos = UnityObjectToClipPos( v.vertex);
o.worldNormal = mul(v.normal , (float3x3)unity_WorldToObject);
o.worldPos = mul(unity_ObjectToWorld , v.vertex).xyz;
return o;
}

fixed4 frag(v2f i) : SV_Target{
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
fixed3 worldNormal = normalize(i.worldNormal);
fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(saturate(dot(reflectDir , viewDir)) , _Gloss);
return fixed4(ambient + diffuse + specular , 1.0);
}


ENDCG
}

}
Fallback "Specular"
}

Blinn-Phong 光照模型

公式:

修改逐像素实现高光反射的片元着色器的代码:

1
2
3
4
5
6
7
8
9
10
11
fixed4 frag(v2f i) : SV_Target{
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
fixed3 worldNormal = normalize(i.worldNormal);
fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
fixed3 halfDir = normalize(worldLightDir + viewDir);
fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(max(0,dot(worldNormal , halfDir)) , _Gloss);
return fixed4(ambient + diffuse + specular , 1.0);
}

效果:

全部代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// Upgrade NOTE: replaced '_Object2World' with 'unity_ObjectToWorld'
// Upgrade NOTE: replaced '_World2Object' with 'unity_WorldToObject'
// Upgrade NOTE: replaced 'mul(UNITY_MATRIX_MVP,*)' with 'UnityObjectToClipPos(*)'

Shader "Unlit/Specular_3"
{
Properties
{
_Diffuse ("Diffuse" , Color) = (1,1,1,1)
_Specular ("Specular" , Color) = (1,1,1,1)
_Gloss ("Gloss" , Range(8.0,256)) = 20
}
SubShader
{
Pass{
Tags { "LightMode" = "ForwardBase" }

CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "Lighting.cginc"

fixed4 _Diffuse;
fixed4 _Specular;
float _Gloss;

struct a2v{
float4 vertex : POSITION;
float3 normal : NORMAL;
};
struct v2f{
float4 pos : SV_POSITION;
float3 worldNormal : TEXCOORD0;
float3 worldPos : TEXCOORD1;
};

v2f vert(a2v v){
v2f o;
o.pos = UnityObjectToClipPos( v.vertex);
o.worldNormal = mul(v.normal , (float3x3)unity_WorldToObject);
o.worldPos = mul(unity_ObjectToWorld , v.vertex).xyz;
return o;
}

fixed4 frag(v2f i) : SV_Target{
fixed3 ambient = UNITY_LIGHTMODEL_AMBIENT.xyz;
fixed3 worldNormal = normalize(i.worldNormal);
fixed3 worldLightDir = normalize(_WorldSpaceLightPos0.xyz);
fixed3 diffuse = _LightColor0.rgb * _Diffuse.rgb * saturate(dot(worldNormal , worldLightDir));
fixed3 reflectDir = normalize(reflect(-worldLightDir , worldNormal));
fixed3 viewDir = normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);
fixed3 halfDir = normalize(worldLightDir + viewDir);
fixed3 specular = _LightColor0.rgb * _Specular.rgb * pow(max(0,dot(worldNormal , halfDir)) , _Gloss);
return fixed4(ambient + diffuse + specular , 1.0);
}


ENDCG
}

}
Fallback "Specular"
}

最后

三种类型高光反射的效果对比
从左到右分别是 逐顶点高光反射、逐像素高光反射、Blinn-Phong光照模型

可以看出,Blinn-Phong模型的高光反射部分看起来更大更亮,在实际渲染中,绝大多数情况也都会选择Blinn-Phong光照模型

划重点

使用 normalize(_WorldSpaceLightPos0.xyz);来得到光源方向

使用 normalize(_WorldSpaceCameraPos.xyz - i.worldPos.xyz);来得到视角方向

本文所写内容参考《UnityShader 入门精要》。

坚持原创技术分享,您的支持将鼓励我继续创作!